1. (a)

×	✓
×	✓
✓	*

(All symbols in a column need to be correct for a mark)

2

(b) (i) chloroplast; grana / thylakoids;

2

2

(ii) nucleus; chromosomes / chromatin / chromatids;

[6]

2. (a) (i) ATP used;

movement is against a concentration gradient;

2

(ii) stops / less movement of ions; movement of ions needs ATP; ATP / production linked to respiration / electron carrier system;

max. 2

(b) (i) greater concentration difference / increased gradient therefore more molecules move in external concentration limiting factor / increased concentration increases rate;

1

1

(ii) (limit imposed in situation B by) limited number of molecules can move through the pores in unit time / pores are full / number of pores is limiting factor;

[6]

3.

A	Ribosomes	Making proteins/ assembling amino acid chain/ protein synthesis	1 mark
В	Mitochondria	Respiration/ formation of ATP/ Krebs cycle/ Oxidative phosphorylation;	1 mark
С	Nuclei	DNA/RNA synthesis/ controls protein production/ cell activity/ carries genetic information;	1 mark
	1 mark		

[4]

4. (a) 4 micrometres = 2 marks (Allow 3.9 - 4. 1)

Correct method of scaling, but incorrect conversion to micrometres = 1

2

(b) (i) not in nucleus / single (loop) chromosome.

1

		(11)	not attached to ER / smaller (70S).	1	
		(iii)	not in mitochondria / attached to mesosomes.	1	
	(c)	wate	rases concentration (of solutes) inside bacteria / decreases r potential inside bacteria; / no net water loss to external solution or uptake of water ore conc. solution inside.	2	[7]
5.	(a)	Bacto Bacto Bacto Bacto Bacto	eria do not have a nucleus/nuclear membrane, eukaryote does; eria do not have membrane-bound organelles, eukaryote does; eria do not have mitochondiia, eukaryote does; eria has 70S/smaller ribosomes, eukaryote has 80S/larger; eria] cell-, have murein/peptidoglycan cell wall, eukaryotes do not-erial cells are very much smaller than eukaryotic cells; eria have circular DNA, eukaryotes have linear DNA; eria may have capsules, eukaryotes do not;	2	
	(b)	(i)	flagellum		
		(ii)	ribosome		
		(iii)	plasmid	3	
		(111)	piasiliu	3	[5]
6.	(a)	(i)	Crista	1	
		(ii)	(Mitochondria) provide energy / ATP; liver cells have high energy requirement for metabolism- reactions specific liver function, eg. glycogen synthesis or deamination (not just: active transport/growth)	2	
		(iii)	Principle - protein synthesis; Function of protein in mitochondria - e.g. synthesis of (respiratory) enzymes / growth / repair / replication.		
			or: DNA has genetic information; ribosomes produce proteins / allows replication of mitochondria.	2	
	(b)		ntain concentrations/water potential same inside & outside (cells / chondria) / prevent osmosis;		
			ent bursting / shrinkage of mitochondria/organelles (not cells)	2	

	(c)	Euka	ryotic ribosomes denser/ heavier (not just ,Jarger').	1	[8]
7.	(a)	Large gas ex (NOT OR Increase)	r gas exchange / diffusion; e / big / increased surface area / shorter pathway for xchange / Hb not too far from membrane; "more / bigger / greater / easier / more efficient) asses flexibility; ass through capillaries;	2	
	(b)	Prote	in synthesis / Cell division / Mitosis; (NOT Meiosis)	1	
	(c)	(i)	Monolayer; Tails up / heads in water; (NOT completely submerged or floating in air)	2	
		(ii)	0.5 / ½; Phospholipids are arranged in a bilayer;	2	[7]
8.	(a)	(i)	Nucleus;	1	
		(ii)	Correct answer $(3\mu m = 2 \text{ marks})$ error with measurement, but clearly derived by dividing drawing size by magnification = 1 mark;	2	
	(b)	(i)	Ice-cold – prevents <u>enzymes</u> working/autolysis/ <u>self</u> digestion;		
		(ii)	Isotonic – prevents osmotic effects to organelles/osmosis/bursting/shrinking;	2	
	(c)		eus is largest/densest/heaviest organelle (sediments first/lowest spin speed); ct reference to plant organelles/cell wall)	2	
	(d)	O ₂ up	otake / ATP production / CO ₂ production (not respiration / heat);	1	[8]

9. A mitochondrion; 1 (a) B nucleus; 1 C endoplasmic reticulum rough ER / ER; 1 (reject smooth ER, ribosomes neutral) ref to proteins / glycoproteins / enzymes / lipids / hormones; (b) ref to **fate** of proteins / glycoproteins / enzymes / lipids / hormones; (linked to previous mark e.g. vesicles / exocytosis / packaging / synthesis / processing *modifying*) If neither of these: reference to vesicles / exocytosis / packaging / synthesis processing /modifying gains 1 mark (Max 1 mark if incorrect function given) 2 30 000 - 34 000 gains 2 marks;; 2 (c) If neither of these: evidence of sensible measured diameter ÷ actual (0.0005 mm) gains 1 mark [7] 10. (a) (i) microvilli; (reject brush border) 1 1 (ii) increased surface area (for diffusion); $\frac{16 \times (1000)}{0.1}$ / principle of $\frac{\text{measuring scale bar}}{\text{dividing by } 0.1}$; (15 –17 tolerance) (b) (i) 160000; (correct answer award 2 marks) 2 electron microscope has a greater resolving power / objects closer (ii) together can be distinguished; 2 electron (beams) have a shorter wavelength; short diffusion pathway /short pathway to the centre / large SA:V ratio (c) for faster, more diffusion; 1 [7] 11. phospholipids in a double layer / area covered is twice total surface (a) area of red blood cells; evidence of calculation of number \times surface area (4.74 \times $10^9 \times 99.4~\mu m^2$)/ calculation of area of 1 cell $\frac{0.92}{4.74 \times 10^{-9}}$; $0.471 \text{ m}^2 \approx 0.5 \times 0.92 \text{ m}^2 / 194 \mu\text{m} \approx 2 \times 99.4;$ 3

	(b)	EITHER feature + explanation red blood cells do not contain organelles / nucleus; so only surface membrane / no internal membranes in macerate; OR red blood cells have simple / regular / spherical shape; so easy to calculate surface area; OR any two features, e.g. simple / regular shape; all same size;			[5]
12.	(a)	(i)	A = phospholipid		
			B = protein; (both correct)	1	
		(ii)	allows movement of lipid soluble/non-polar molecules/named e.g. water/gases; prevents movement of water <u>soluble/polar molecules/named</u> e.g. ions / amino acids; idea of selection / membrane partially/differentially permeable/large molecules do not move through, small molecules do; (accept semi-permeable)	2 max	
	(b)	(i)	diffusion (reject facilitated)	1	
		(ii)	higher rate of exchange/diffusion; prevents cooling of the blood / prevents increase in viscosity;	2	
		(iii)	concentration gradient maintained / equilibrium never achieved; blood always meets fluid with lower concentration of urea; diffusion/exchange along the whole length of surface;	2 max	
		(iv)	$0.2 \times 60 = 12 \text{ dm}^3 \text{ h}^{-1}$; (principle: volume per hour) $12 \times 5 = 60 \text{ dm}^3$; (correct answer 2 marks)	2	[10]
13.	(a)		itochondria; posomes (accept ribosomes and rER);	2	
	(b)	idea	of <u>sections</u> or cuts; of mitochondria orientated differently or in different positions / ription of 3D structure of mitochondria, e.g. sausage-shaped;	2	

(c)	translation / protein/polypeptide synthesis;	1	
(d)	provide/produce energy or ATP (reject create energy); (disqualify first mark if 'for respiration') high respiration (rate) (accept lots); for active uptake / transport (accept description); absorption of digested food/substances/products/correctly named product (only accept monosaccharides, amino acids, dipeptides); 3 1	max	[8]
(a)	B; D;	2	
(b)	idea of molecules/named molecules <u>moving</u> = Fluid; idea of both <u>proteins and phospholipids</u> = Mosaic;	2	
(c)	slow rise, sharp rise, levelling off (reject ,becomes constant'); diffusion rate increases / description of diffusion rate, e.g. increase in kinetic energy increases loss of ions; sharp rise / above 50°C proteins are denatured; levelling off due to concentration of chloride ions in water becoming equal / maximum loss of Cl ⁻ ions;	1 max	[7]
(a)	 (i) homogeniser/blender/pestle and mortar/ description e.g. grind with sand; (ii) centrifuge/ description e.g. spin at high speeds; 	1	
(b)	 (i) chloroplast; (ii) (outer) membrane breaks down / inner membranes/grana separate; solution has a higher/less negative water potential; (accept description of relative concentrations) water moves into organelle/chloroplast by osmosis / from higher to lower water potential / into more concentrated solution; (reject into cell) organelle swells/increase in pressure and bursts; 	1	[7]
	(d) (a) (b) (c)	(d) provide/produce energy or ATP (reject create energy); (disqualify first mark if 'for respiration') high respiration (rate) (accept lots); for active uptake / transport (accept description); absorption of digested food/substances/products/correctly named product (only accept monosaccharides, amino acids, dipeptides); (a) B; D; (b) idea of molecules/named molecules moving = Fluid; idea of both proteins and phospholipids = Mosaic; (c) slow rise, sharp rise, levelling off (reject, becomes constant'); diffusion rate increases / description of diffusion rate, e.g. increase in kinetic energy increases loss of ions; sharp rise / above 50°C proteins are denatured; levelling off due to concentration of chloride ions in water becoming equal / maximum loss of Cl' ions; (a) (i) homogeniser/blender/pestle and mortar/ description e.g. grind with sand; (ii) centrifuge/ description e.g. spin at high speeds; (b) (i) chloroplast; (ii) (outer) membrane breaks down / inner membranes/grana separate; solution has a higher/less negative water potential; (accept description of relative concentrations) water moves into organelle/chloroplast by osmosis / from higher to lower water potential / into more concentrated solution; (reject into cell)	(d) provide/produce energy or ATP (reject create energy); (disqualify first mark if 'for respiration') high respiration (rate) (accept lots); for active uptake / transport (accept description); absorption of digested food/substances/products/correctly named product (only accept monosaccharides, amino acids, dipeptides); 3 max (a) B; D; 2 (b) idea of molecules/named molecules moving = Fluid; idea of both proteins and phospholipids = Mosaic; 2 (c) slow rise, sharp rise, levelling off (reject, becomes constant'); diffusion rate increases / description of diffusion rate, e.g. increase in kinetic energy increases loss of ions; sharp rise / above 50°C proteins are denatured; levelling off due to concentration of chloride ions in water becoming equal / maximum loss of Cl' ions; 2 max (a) (i) homogeniser/blender/pestle and mortar/ description e.g. grind with sand; (ii) centrifuge/ description e.g. spin at high speeds; 1 (b) (i) chloroplast; (ii) (outer) membrane breaks down / inner membranes/grana separate; solution has a higher/less negative water potential; (accept description of relative concentrations) water moves into organelle/chloroplast vater moves into organelle/chloroplast vater moves into organelle/chloroplast vater moves into organelle/chloroplast lower water potential / into more concentrated solution; (reject into cell)

16.	(a)	(i)	D plasmid / ribosome(s) / cytoplasm / storage granules; (accept any sensible structure)		
			E (slime / mucous) capsule		
			OR .		
			slime / mucous layer;	2	
		(ii)	protection / maintain shape / prevent lysis / strength / support;	1	
	(b)	two o	of the following:		
		OR			
			ear envelope / mitochondria / chloroplasts / sER / rER / i apparatus / 80s ribosomes		
			r <u>DNA</u> / chromosomes / lysosomes / vacuole / vescicles / <u>lose</u> cell wall;	2 max	
	(c)	(i)	starch digested / broken down; by amylase / carbohydrase;	2	
		(ii)	any sensible suggestion e.g. no secretion of amylase / functional amylase / piece of fungus might have died;	1	
			(accept carbohydrase / enzyme for amylase)		
			(reject "no digestion" without qualification)		
					[8]
17.	(i)	cold	- no / reduced enzyme action / e.g. stops autolysis;		
			(reject "cell activity reduced")		
			isotonic - stops osmotic effects / description of effect on cells or organelles; buffer - prevents damage to enzymes / proteins;	3	
	(ii)	breal	k open the cells / release the cell contents;	1	
	(iii)		rnatant / liquid above the pellet;		
	` '	_	at a high(er) speed;	2	
			(mark as independent points)		[6]

18.	(a)	featu	are and adaption; for example			
		1. 2.	phospholipid bilayer (as a barrier); forms a barrier to water soluble / charged substances / allows non-polar substances to pass			
			OR			
			maintains a different environment on each side / compartmentalis	sation;		
		3. 4. 5. 6. 7. 8. 9 10 11 12	bilayer is fluid; can bend to take up different shapes for phagocytosis / form vesicles / self repair; channel proteins (through the bilayer)/intrinsic protein; let water soluble/charged substances through / facilitated diffusio carrier proteins (through the bilayer); allow facilitated diffusion / active transport; surface proteins / extrinsic proteins, glycoproteins / glycolipids; cell recognition / act as antigens / receptors; cholesterol; regulates fluidity / increases stability;	n; 6 max		
			siple mark (only for 5, 6, 7, 8)			
		-	eins transport material across the membrane			
		3 fea	tures max			
	(b)	curve description: 1 Curve goes down when the poison is added <u>and</u> rises when ATP added; 1				
		2 3 4 5	Ion movement is by active transport; ATP / energy needed for active transport; respiration provides ATP / energy; poison inhibits/stops respiration / ATP production;	3 max	[10]	
19.	(a)	(i)	A mitochondrion and B nucleus; (need both for one mark)	1		
		(ii)	increased surface area; for respiration/enzymes;	2		
	(b)	e.g. p	suitable feature plasmid/capsule/70S ribosomes/smaller somes/complex cell wall/mesosome/no nucleus;	1		

	(c)	first/l wall i super	f differential centrifugation/or description; low-spin pellet discarded / spin at low speed to remove cell material/cell debris; matant re-spun at higher speed / until pellet with chloroplasts is found; od of identifying chloroplasts e.g. microscopy;	3 max	[7]
20.	(a)	form perm allow make mem	of the following: (water) impermeable barrier to water-soluble substances / selectively eable / allows non-polar molecules to pass through; es cell to maintain different concentrations either side; es membranes self-sealing/able to fuse with other branes/able to form les / gives flexibility/fluidity;	2 max	
	(b)		ace/extrinsic protein) for cell recognition / binding to ones/identification	1	
	(c)	(i)	involves carrier/transmembrane/transport proteins; (reject channel proteins)	1	
		(ii)	requires energy/requires use of ATP / moves substances/ions/molecule against a concentration gradient;	es 1	
		(iii)	the curve levels off above a certain external concentration of substance as channel proteins are saturated with molecules (and no more can be carried);	e; 2	[7]
21.	(a)	1	Cholera bacterium is prokaryote;		
		2	Does not have a nucleus/nuclear envelope/ has DNA free in cytoplasm/has loop of DNA;		
		3 and	4 Any two from		
			nembrane-bound organelles/no mitochondria / no golgi/no plasmic reticulum/etc;		
			Maximum of 2 marks for points 3 and 4.		
		5	Small ribosomes only;		
	6 and 7 Ar		7 Any two from		
		Caps	ule/flagellum/plasmid / cell wall/etc;	5 max	
			Maximum of two marks for points 6 and 7.		

(b) Advantages:

- 1 Small objects can be seen;
- 2 TEM has high resolution;

Accept better

3 Wavelength of electrons shorter;

Advantages: allow maximum of 3 marks.

Limitations:

- 4 Cannot look at living cells;
- 5 Must be in a vacuum;
- 6 Must cut section / thin specimen;
- 7 Preparation may create artefact
- 8 Does not produce colour image;

5 max

Limitations: allow maximum of 3 marks.

[10]